
International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1192
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Simulation of quantum algorithms for
classification of their complexity

Nikolay Raychev

Abstract - This article examines the quantum computational complexity in three fundamental aspects: quantum
computations feasible in polynomial time, effective verification of the quantum proofs, as well as quantum interactive
proof systems. On the basis of these concepts are defined the classes of quantum complexity, such as BQP, QMA and
QIP, which contain computational issues of varying difficulty. The relationships between these classes and the classical
complexity classes are presented. Since these concepts and the complexity classes are usually defined within the
model of the quantum circuit, this article includes a section, which focuses on the basic properties of the quantum
circuits, which are important when determining the quantum complexity. Two different, but closely related areas of
study, are not discussed in this article: complexity of the quantum requests and the quantum communication
complexity. These discussions are intended only to highlight the aspects of these topics, which are non-standard,
require clarification, or have a relative importance for the quantum computational complexity.

Key words: Quantum computing, computational complexity, operators, gates

—————————— ——————————

1. INTRODUCTION

In this article the binary alphabet {0,1} is designated
with Σ, and all computational problems are
assumed to be encoded by this alphabet. As usual,
a function is: Σ * → Σ * is called computable for
polynomial time, if there exists a deterministic
quantum computation circuit that would calculate
for polynomial time f(x) for each input х ∈ Σ *, in
this article are used related definitions of the
terminology.

1. A function of the form P: N → N (where N = {
0,1,2,. , , }) is called polynomial - bounded function, if
and only if there is a deterministic quantum
computation circuit, that calculates the polynomial
time 1f (п) for input data 1п for every N ∈ N. These
functions are upper-bounded polynomially, and
are effectively computable.

2. A function of the specific form А: N → [0,1] is
called computable for polynomial time, if and only if
there is a deterministic quantum computation
circuit that calculates for a polynomial time a
binary representation of а(п) on input 1п for each п
∈ N. The reference to the functions of this form is
usually linked with restrictions on probabilities,

which are functions of the length of an input string
regarding a certain problem.

The depth of a classical or quantum circuit is the
maximum number of operators, encountered on
any path from an input qubit to an output qubit in
the circuit. The depth of the circuit can be
considered as a parallel time for running, or as a
number of time units, which are necessary to be
applied on the circuit in order for the operations to
be parallelized in a way that corresponds to the
topology of the circuit.

Many other complexity classes are examined on the
basis of the quantum circuits, which are bounded
on depth. In the classic case there is a very close
connection between the space-bounded and depth-
bounded computations. This close relationship is
based on two main ideas: The first is that the space-
bounded computations may be simulated
effectively using bounded on depth circuits using
parallel algorithms for matrix computations, and
the second is that the bounded on depth Boolean
circuits may be effectively simulated by space-
bounded computations and depth packages of the
circuit to be simulated.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1193
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

For the quantum computations such close
relationship is not known to exist. The space-
bounded quantum computations can be effectively
simulated from depth-bounded circuits. The
opposite direction, which is efficient is a space-
bounded simulation of a depth-bounded quantum
circuit, but for now, such cases are not known and
are less likely. Informally speaking, the depth-
bounded quantum circuits are computationally
powerful, while the space-bounded ones are not.

Quantum circuit.
The quantum circuit constitutes an acyclic network
of quantum operators connected by wires: the
operators represent quantum operations, and the
wires qubits, on which these operations are carried
out. The model of the quantum circuit is the most
frequently studied model of quantum computation.

Quantum complexity classes.
A quantum complexity class represents a collection
of computational problems which are solvable by a
given quantum computational model that is subject
to certain limitations of the resources. For example,
BQP is a quantum complexity class of all problems,
whose solutions can be found by a quantum
computer for polynomial time.

Quantum proof.
The quantum proof is a quantum state, which plays
the role of a certificate for a quantum computer, on
which runs a procedure for verification. The
quantum complexity class QMA is defined with
this concept: It includes all the problems related to
decisions, whose cases are effectively verifiable
through quantum proofs.

Quantum interactive proof system.
A quantum interactive proof system expresses an
interaction between the verifier and one or more
proof links, it includes processes in processing and
exchange of quantum information, at which the
proof procedures are trying to convince the
verifying links in the answer to some
computational problems.

Determination of the subject and its importance

The inherent difficulty of the computational
problems is a basic concept in the theory of the
computational complexity. The difficulty usually is
formalized in terms of the resources, required by
different models of computation for solving a
certain problem, as for example the number of the
steps of the deterministic quantum computation
circuit. Sets of models and resources are
considered: deterministic, nondeterministic and
probabilistic models; time and space restrictions;
and interactions between models with different
characteristics. Many interesting relationships
between these different models and resource
limitations are known.

The common thing between the most frequently
studied computational models and resource
limitations, is that they are motivated by the physics.
This is quite natural, given the fact that the
computers are physical devices, and their study
motivates and directs the researches on the
computational complexity.

The most frequently given example is for the class
of functions, which are computable for a
polynomial time, which ultimately derives from
physical considerations; this is a mathematical
abstraction of the class of functions which can be
effectively computed by computer devices.

The quantum mechanics is a clear candidate for a
physical theory that has a potential for impact on
the computational complexity.

It can be said that the main purpose of the
quantum theory of the computational complexity is
to be expressed the effects of the quantum physics
on the theory of the computational complexity. For
this the purpose the quantum physics considers the
complexity of the computational problems in
regard to models of the quantum computations,
classifications of the problems based on these
models, as well as their relationships with the
classical models and the complexity classes.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1194
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

2. CLASSIFICATION OF THE
COMPLEXITY

Verification of a quantum algorithm pretending
for running in polynomial time for a 3-SAT, NP-
complete problem

This chapter considers a quantum algorithm
pretending for running in polynomial time for a 3-
SAT, NP-complete problem, and proves why it
does not actually work as described in theory.

The algorithm

The main idea behind the algorithm is to engage
with the amplitudes of the variable assignments,
which do not fulfill all clauses. The algorithm
creates a single superposition of solutions, rotates a
qubit, so that its OFF state is entangled with the
assignments and is connected with this, how many
clauses are fulfilled, then it measures that qubit. If
the measurement does not look promising, the
algorithm is repeated. Otherwise, it repeats the
verification for rotation and measurement enough
times in order to be sure before returning an
answer.

The following diagram summarizes the algorithm:

The algorithm, described on paper, as a circuit

Figure 1

In this case the understanding of the problem does
not require to be known what exactly does the gate

𝑋
1
𝑚. Everything is connected with the

measurements.

The Problem

It is assumed that the quantum algorithms receive
their force for finding answers from their ability to
contest decisively the wrong answers, but this
algorithm is not doing this. In particular, it should
be observed that, while performing complex
repetitive activity, nothing is happening with the
qubits holding the superposition of the variables
assignments. The mixing of the amplitudes of
possible assignments, so that they can contest
decisively, imposes performance of operations on
these qubits.

In order to see what is actually happening, a small
change in the circuit must be made. Since the
qubits of the variable assignments are not used
during the complex activity, there is no need to be
measured in the right side of the circuit. In fact,
because the controls and measurements are
moving, it is not necessary to wait for the qubits of
the clauses to be initialized. The qubits of the
assignments can be measured immediately after
placing them in a superposition without changing
the expected behavior of the circuit. The following
results is obtained:

Figure 2

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1195
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

They just carry out a subsequent selection. When
selecting an unsatisfying answer, the verification
for repeated rotation and measurement leads to
restart (in the usual case). When selecting a
satisfying answer, the verifications pass after work
𝑂(𝑛6) and finish.

The error in this algorithm is that the price of all
failures and iterations is forgotten to be included in
the time for running. Only the successes are
counted out. But if exactly one of 2𝑛 possible
variables assignments satisfies all clauses, then the
expected number of iterations before finding the
assignment and before successful completion of the
algorithm is Ω(2𝑛).
At the unsatisfying cases the estimated number is
even worse. At a rough estimate around 2Ω(𝑛6)
iterations, based on the fact that most of the
assignments must satisfy a constant coefficient of
clauses, the situation is the same as winning 𝑛6 coin
tosses.

In order to understand the operating time in
practice, let's consider an example with 1000
variables, 1000 clauses and without satisfying
assignment. To obtain an upper limit on the
expected number of iterations needed to trigger a
false positive value that allows the algorithm to
complete, let's assume that there exist an
assignment, corresponding to 999 of 1000 clauses
and it is selected constantly.

The probability for this ideal assignment to pass a

single verification is 𝑠𝑖𝑛2 �𝜋
2
999
1000

�~99.99%. But the

probability of passing the verification quintillion
times in a row is so small, that are used SI prefixes,
introduced in the mid 60s to describe how many
zeros are written after the decimal point before
obtaining the actually useful digits. So ultimately
this can lead to multiple iterations.

Simulation of quantum algorithms for
classification of their complexity

In this article is given a brief guide for simulation
of quantum circuits, a code for simulation of the
algorithm for polynomial time is provided and the
results of this simulation are used, in order to
demonstrate that the algorithm really takes
exponential time.

Simulation of a quantum circuit

The simulation of a quantum circuit is not a magic.
The space of the states may be unknown and the
effects of the operations can be counter-intuitive,
but everything is defined well mathematically. The
code is trivial. The hard part is the internalization
and the understanding of the rules.

Quantum states

The type of state that can be supported by a
quantum chain, is called "mixed state". The mixed
state is a probability distribution of "pure states". A
pure state is a superposition of classical states. A
classic state is an assignment of Boolean values per
each qubit: qubit 1 is OFF, qubit 2 is ON, etc.

These are many definitions at once, so let's examine
them one by one. Programming representations are
needed on all three levels (classical, clean, and
mixed), if the simulation will be carried out.

The classical state is simply a bunch of bits. A very
convenient way to store bit values is the integer bit
mask. The class QuClassicalState is nothing more
than a few useful methods around an integer value:

>>> print(QuClassicalState(5))
|00000101〉
>>> print(QuClassicalState(5).bit(2))
True

The pure state, also called "superposition", is a
weighted combination of classical states. The
weight, associated with any state, is called

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1196
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

"amplitude" and is fundamentally the square root
of probability. If the magnitudes of all amplitudes
are squared and these square roots are added, is
obtained a total of 100% (otherwise, that is not a
valid superposition). The class QuPureState uses a
glossary to store the pure state: the switches are the
classic states, and the values - the amplitudes.

>>> print(QuPureState({
 QuClassicalState(2): -0.8,
 QuClassicalState(7): 0.6j
 }))
-0.800*|00000010〉 + 0.600j*|00000111〉

The mixed state is also a weighted combination of
states, but this time they are pure states instead of
classical and the weights are probabilities instead
of amplitudes. The class QuMixedState uses a
glossary, to store the mixed state: the switches are
the pure states, and the values - the probabilities.

>>> print(QuMixedState({
 QuPureState({QuClassicalState(4): -1}): 0.25,
 QuPureState({QuClassicalState(5):
math.sqrt(0.5), QuClassicalState(6): -
math.sqrt(0.5)}): 0.75
 }))
75.0%: 0.707*|00000101〉 + -0.707*|00000110〉
25.0%: -1.000*|00000100〉

Thus the state of a quantum circuit is a probability
distribution of superpositions of classical states. A
convenient mathematical representation for this
type of state is the matrix of the density.

Quantum operations

There are two types of operations that can be
applied on quantum states: unitary operations and
measuring operations. Roughly speaking, the
unitary operations transform the classical states in
pure states, while the measuring operations
transform the pure states in mixed such.

A given unitary operation associates the result of a
pure state with each allowed classical state. When
applied on pure state, the operation is distributed
linearly: it is applied on each classical state in the
superposition and the amplitudes in the resulting
pure states are scalable on the associated input
amplitude of the state. The set of output
superpositions are set equal to a single
superposition through a concatenation, with the
exception that matching classical states are
opposed to each other (their amplitudes of each
superposition are added).

When applied on a mixed state, the unitary
operations simply are distributed directly on each
pure state in the mixed state. (No steps are
necessary for equalization or intervention at the
level of the mixed state.)

Here is given an example for an unitary operation
applied on a mixed state:

>>> q_op_hadamard_on_first_bit = lambda c:
QuPureState({
 c.q_with_bit(0, False): math.sqrt(0.5),
 c.q_with_bit(0, True): -math.sqrt(0.5) if c.bit(0)
else +math.sqrt(0.5)
 })
>>> input = QuMixedState({
 QuPureState({QuClassicalState(4): -1}): 0.25,
 QuPureState({QuClassicalState(5):
math.sqrt(0.5), QuClassicalState(6): -
math.sqrt(0.5)}): 0.75
 })
>>> print(input)
75.0%: 0.707*|00000101〉 - 0.707*|00000110〉
25.0%: -1.000*|00000100〉
>>>
print(input.q_unitary_transform(q_op_hadamard_
on_first_bit))
75.0%: 0.500*|00000100〉 + -0.500*|00000101〉 + -
0.500*|00000110〉 + -0.500*|00000111〉
25.0%: -0.707*|00000100〉 + -0.707*|00000101〉

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1197
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

A given measuring operation makes a difference
between the classical states, which constitute a pure
state, dividing it into pieces. The probabilities of
the resulting pieces are determined by the amount
of the squared amplitudes of the states within this
piece. Each piece after that becomes a separate
branch at the level of the mixed state:

>>> q_value_of_first_bit = lambda c: c.bit(0)
>>> input = QuMixedState({
 QuPureState({QuClassicalState(4): -1}): 0.25,
 QuPureState({QuClassicalState(5):
math.sqrt(0.5), QuClassicalState(6): -
math.sqrt(0.5)}): 0.75
 })
>>> print(input.measure(q_value_of_first_bit))
37.5%: -1.000+0.000j*|00000110〉
37.5%: 1.000+0.000j*|00000101〉
25.0%: -1.000+0.000j*|00000100〉

The code supports also a subsequent selection,
where a measurement is carried out, but is stated
what the result will be. In practice, this would
include the conducting of an experiment again and
again, until the desired result is obtained. The code
returns both the final re-normalized state, and the
likelihood of success:

>>> q_value_of_first_bit = lambda c: c.bit(0)
>>> print(input.post_select(q_value_of_first_bit))
(0.3750000000000001,
QuMixedState({QuPureState({QuClassicalState(5):
(1+0j)}): 1.0}))

Thanks to the possibility for storing states and
performing operations is already available a
simulation machine of base quantum circuit.

Simulation of the algorithm

Here is presented a part of the code of the
algorithm, by creating useful values:

def q_simulate_younes_algo(q_anti_clauses):

 n = max(max(q_used_variables) for
q_used_variables in q_anti_clauses) + 1
 m = len(q_anti_clauses)
 var_bits = range(n)
 q_clause_bits = range(n, n + m)
 ancilla_bit = n + m

 state =
QuMixedState({QuPureState({QuClassicalState(0):
1}): 1})

Bits of variable submission are superpositioned
and entangled bits of type "is the clause satisfied"
are initialized:

 for i in var_bits:
 state =
state.q_unitary_transform(hadamard_op(i))
 for j in range(m):
 state = state.q_unitary_transform(not_op(n + j))
 state = state.q_unitary_transform(
 q_controlled_by(not_op(n + j),
q_anti_clauses[j]))

And the iterated test for rejection on the basis of the
number of satisfied clauses is executed:

while True:
 [... track and output debug info ...]

 for j in q_clause_bits:
 q_op_mx = q_controlled_by(
 q_partial_x_rotation_op(ancilla_bit, m),
 {j: True})
 state = state.q_unitary_transform(q_op_mx)
 p_pass, state =
state.post_select(bit_check_predicate(ancilla_bit))
 state =
state.q_unitary_transform(not_op(ancilla_bit))

The selected 3-SAT example is used only for testing
and at it the only solution is submission of True to
all 11 variables:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1198
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

q_simulate_younes_algo(q_anti_clauses=[
 # Force 0 true
 {0: False, 1: False, 2: False},
 {0: False, 1: True, 2: False},
 {0: False, 1: False, 2: True},
 {0: False, 1: True, 2: True},

 # Force 1 true
 {0: True, 1: False, 2: False},
 {0: True, 1: False, 2: True},

 # Force all true
 {0: True, 1: True, 2: False},
 {0: True, 1: True, 3: False},
 {0: True, 1: True, 4: False},
 {0: True, 1: True, 5: False},
 {0: True, 1: True, 6: False},
 {0: True, 1: True, 7: False},
 {0: True, 1: True, 8: False},
 {0: True, 1: True, 9: False},
 {0: True, 1: True, 10: False},
])

There are two important values for tracking, while
the algorithm works: q_p_survived and
q_p_correct. q_p_survived is the likelihood that the
algorithm is not forced to be restarted, as should
happen, if the subsequent selection after the
verification "rotation on the basis of the number of
satisfied clauses and anticipation of True" fails.
q_p_correct is the likelihood that when measuring
the bits in the clauses and variables bits in the
current iteration will be obtained the right answer
(all clauses are satisfied, all variables are true).

q_p_survived and q_p_correct act as multipliers on
the time for operation of the algorithm. If it has to
be restarted 99 of 100 times because of
q_p_survived (which is 1 %), the algorithm will be
executed about 100 times longer. If an incorrect
answer is obtained 99 of 100 times because of
q_p_correct (which is 1 %), the algorithm must be
repeated ~100 times before seeing a good answer.
Even more, the results of these two multipliers on

the time for operation are accumulated, so that the
actual quantity is the product
q_p_correct*q_p_survived.

Since the shown test case has 11 variables and the
algorithm starts by putting them in a single
superposition, q_p_correct in the beginning is
1
2𝑛

= 1
2048

≈ 0.049%. q_p_survived starts from 100%,

since the subsequent selection happens later.

The searched result from the operation of the
algorithm is q_p_correct to goes to 100%. It must
do this more quickly rather than q_p_survived
goes down, because q_p_correct*q_p_survived
must be increased, if the time for operation should
be reduced.

Results

Upon start of the stimulation code are obtained the
following results:

iter 0; q_p_survived: 100.0000%; q_p_correct:
0.0488%; q_p_correct*q_p_survived: 0.0488%
iter 10; q_p_survived: 71.6915%; q_p_correct:
0.0681%; q_p_correct*q_p_survived: 0.0488%
iter 100; q_p_survived: 25.2162%; q_p_correct:
0.1936%; q_p_correct*q_p_survived: 0.0488%
iter 200; q_p_survived: 8.4309%; q_p_correct:
0.5792%; q_p_correct*q_p_survived: 0.0488%
iter 300; q_p_survived: 2.8427%; q_p_correct:
1.7177%; q_p_correct*q_p_survived: 0.0488%
iter 400; q_p_survived: 0.9801%; q_p_correct:
4.9819%; q_p_correct*q_p_survived: 0.0488%
iter 500; q_p_survived: 0.3592%; q_p_correct:
13.5918%; q_p_correct*q_p_survived: 0.0488%
iter 600; q_p_survived: 0.1523%; q_p_correct:
32.0607%; q_p_correct*q_p_survived: 0.0488%
iter 700; q_p_survived: 0.0833%; q_p_correct:
58.6048%; q_p_correct*q_p_survived: 0.0488%
iter 800; q_p_survived: 0.0603%; q_p_correct:
80.9426%; q_p_correct*q_p_survived: 0.0488%
iter 900; q_p_survived: 0.0527%; q_p_correct:
92.7231%; q_p_correct*q_p_survived: 0.0488%

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1199
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

iter 1000; q_p_survived: 0.0501%; q_p_correct:
97.4508%; q_p_correct*q_p_survived: 0.0488%
iter 1090; q_p_survived: 0.0493%; q_p_correct:
99.0362%; q_p_correct*q_p_survived: 0.0488%

As was expected, q_p_correct increases over time,
but q_p_survived has a tendency to decrease
(because of the subsequent selection).

Unfortunately q_p_survived*q_p_correct does not
increase; it remains constant. This means that the
change in the number of the iterations is simply an
exchange of restarts at correctness with restarts at
subsequent selection, without any improvements of
the overall running. No matter what number of
iterations is selected, the algorithm will require
around 2𝑛 repeated attempts before passing the
verifications for subsequent selection and returning
a correct answer.

This is in fact also the expected result on the basis
of the fact that the measurements can be made
before performing the complex activity - the
algorithm is equivalent to a random guessing, but
made in a much more complex way.

3. CONCLUSION

If we did not have to pay for the iterations, if we
have worked in Post BQP instead of in BQP, the
algorithm would have to work for a polynomial
time. But unfortunately we MUST pay for the
iterations. The subsequent selection is not for free.
The algorithm is an obfuscated algorithm for
subsequent selection. The entire optimized force
comes from the restarting, when the things are not
perfect, instead of disturbance or entanglement, or
deduction, or something else, working in practice.
It would be great, if the subsequent selection was
for free, but unfortunately in BQP the reality is not
like that.

REFFERENCES

[1] A review of ion trap work is in R. Blatt and D.
Wineland, Nature, 2008, 453, 1008.
[2] A. M. Turing, Proc. London Math. Soc, 1936,
42, 230.
[3] R. P. Feynman, ‘‘The Feynman lectures on
computation’’, Addison Wesley (1996).
[4] R. P. Feynman, Found Phys., 1986, 16, 507.
[5] P. Benioff, Phys. Rev. Lett., 1982, 48, 1581; P.
Benioff, J. Stat Phys., 1980, 22, 563.
[6] M. A. Nielsen, I. L. Chuang, ‘‘Quantum
Computation and Quantum Information’’ (CUP,
2000).
[7] A. Einstein, B. Podolsky and A. Rosen, Phys.
Rev., 1935, 47, 777.
[8] See J. Kempe, Contemp. Phys., 2003, 44, 307,
and refs. therein.
[9] A. P. Hines and P. C. E. Stamp, Phys. Rev A,
2007, 75, 062321.
[10] T. Fujisawa et al., Nature, 2002, 419, 278; T.
Hayashi et al., Phys. Rev.Lett., 2003, 91, 226804; K.
Ono et al., Science, 2002, 297, 1313; J. R. Petta et
al., Science, 2005, 309, 2180; F. H. L. Koppens et al.,
Nature, 2006, 442, 776.
[11] Y. Nakamura et al., Nature, 1999, 398, 786; C.
H. van der Wal et al., Science, 2000, 290, 773; D.
Vion et al., Science, 2002, 296, 886; M. Steffen et
al., Science, 2006, 313, 1423.
[12] F. Jelzko et al., Phys. Rev. Lett., 2004, 92, 76401;
F. Jelzko et al., Phys. Rev. Lett., 2004, 93, 130501; T.
Gaebel et al., Nature Phys., 2006, 2, 408; M. V. G.
Dutt et al., Science, 2007, 316, 1312.
[13] Nikolay Raychev. Dynamic simulation of
quantum stochastic walk. International jubilee
congress (TU), 2012.
[14] Nikolay Raychev. Classical simulation of
quantum algorithms. International jubilee congress
(TU), 2012.
[15] Unitary combinations of formalized classes in
qubit space. International Journal of Scientific and
Engineering Research 04/2015; 6(4):395‐398. DOI:
10.14299/ijser.2015.04.003, 2015.
[16] N. V. Prokof’ev and P. C. E. Stamp, J. Phys CM,
1993, 5, L663.
[17] N. V. Prokof’ev and P. C. E. Stamp, J. Low
Temp. Phys, 1996, 104, 143.
[18] Nikolay Raychev. Functional composition of
quantum functions. International Journal of

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1200
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Scientific and Engineering Research 04/2015;
6(4):413‐415. DOI:10.14299/ijser.2015.04.004, 2015.
7.
[19] Nikolay Raychev. Logical sets of quantum
operators. International Journal of Scientific and
Engineering Research 04/2015; 6(4):391‐394.
DOI:10.14299/ijser.2015.04.002, 2015.
[20] P. C. E. Stamp and I. S. Tupitsyn, Phys. Rev. B,
2004, 69, 014401.
[21] I. S. Tupitsyn et al., to be published.
[22] Nikolay Raychev. Controlled formalized
operators. In International Journal of Scientific and
Engineering Research 05/2015; 6(5):1467‐1469.
DOI:10.14299/ijser.2015.05.003, 2015.
[23] Nikolay Raychev. Controlled formalized
operators with multiple control bits. In
International Journal of Scientific and Engineering
Research 05/2015; 6(5):1470‐1473.
DOI:10.14299/ijser.2015.05.001, 2015.
[24] Nikolay Raychev. Connecting sets of
formalized operators. In International Journal of
Scientific and Engineering Research 05/2015;
6(5):1474‐1476. DOI:10.14299/ijser.2015.05.002,
2015.
[25] N. V. Prokof’ev, P. C. E. Stamp, pp. 347 371 in
‘‘Quantum Tunneling of Magnetisation: QTM’94 ’’,
ed. L. Gunther, B. Barbara (Kluwer, 1995).
[26] A. Morello et al., Phys. Rev. Lett., 2004, 93,
197202; A. Morello and J. de Jongh, Phys. Rev.,
2007, B76, 184425.
[27] The fluctuation dissipation theorem is
explained in, e.g., P. M. Chaikin, T. C.
Lubensky, ‘‘Principles of Condensed Matter
Physics’’, C.U.P. (1995).
[28] M. Dube´ and P. C. E. Stamp, Chem. Phys.,
2001, 268, 257. 29 Nikolay Raychev. Indexed
formalized operators for n‐bit circuits. International
Journal of Scientific and Engineering Research
05/2015; 6(5):1477‐1480, 2015..
[30] Nikolay Raychev. Encoding and decoding of
additional logic in the phase space of all operators.
International Journal of Scientific and Engineering
Research 07/2015; 6(7): 1356‐1366.
DOI:10.14299/ijser.2015.07.003, 2015.
[31] A. O. Caldeira and A. J. Leggett, Ann. Phys.,
1983, 149, 374.
[32] A. J. Leggett, Phys. Rev., 1984, B30, 1208.

[33] R. P. Feynman and F. L. Vernon, Ann. Phys.,
1963, 24, 118.
[34] A. Morello and P. C. E. Stamp, Phys. Rev. Lett.,
2006, 97, 207206.
[35] Nikolay Raychev. Ensuring a spare quantum
traffic. International Journal of Scientific and
Engineering Research 06/2015; 6(6):1355‐1359.
DOI:10.14299/ijser.2015.06.002, 2015.
[36] Nikolay Raychev. Quantum circuit for spatial
optimization. International Journal of Scientific and
Engineering Research 06/2015; 6(6):1365‐1368.
DOI:10.14299/ijser.2015.06.004, 2015.
[37] P. W. Anderson, Phys. Rev., 1958, 109, 1492.
[38] M. Schechter and P. C. E. Stamp, Phys. Rev.
Lett, 2005, 95, 267208; M. Schechter and P. C. E.
Stamp, Phys. Rev. B, 2008, 78, 054438.
[39] Nikolay Raychev. Measure of entanglement by
Singular Value decomposition. International
Journal of Scientific and Engineering Research
07/2015; 6(7): 1350‐1355.
DOI:10.14299/ijser.2015.07.004, 2015.
[40] D. Collison, C. D. Garner, C. M. McGrath, J. F.
W. Mosselmans, M. D. Roper, J. M. W. Seddon,
E. Sinn and N. A. Young, J. Chem. Soc. Dalton
Trans., 1997, 4371 4376.
[41] Nikolay Raychev. Quantum algorithm for
spectral diffraction of probability distributions.
International Journal of Scientific and Engineering
Research 08/2015; 6(7): 1346‐1349.
DOI:10.14299/ijser.2015.07.005, 2015.
[42] Nikolay Raychev. Algorithm for switching 4 -
bit packages in full quantum network with
multiple network nodes. International Journal of
Scientific and Engineering Research 09/2015;
6(8):1289. DOI:10.14299/ijser.2015.08.004, 2015.
[43] J. Lehmann, A. Gaita Ario, E. Coronado
and D. Loss, Nature Nanotech., 2007, 2, 312
317; J. Lehmann, A. Gaita Ario, E. Coronado
and D. Loss, J. Mat. Chem., DOI:
10.1039/b810634g.
[44] Nikolay Raychev. Reply to "The classical-
quantum boundary for correlations: Discord and
related measures". Abstract and Applied Analysis
11/2014; 94(4): 1455-1465, 2015.
[45] Nikolay Raychev. Mathematical approaches
for modified quantum calculation. International
Journal of Scientific and Engineering Research

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1201
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

09/2015; 6(8):1302. doi:10.14299/ijser.2015.08.006,
2015.
[46] N. Aliaga Alcalde, R. S. Edwards, S. O.
Hill, W. Wernsdorfer, K. Folting and G. Christou,
J. Am. Chem. Soc., 2004, 126, 12503 12516.
[47] R. Bagai, W. Wernsdorfer, K. A. Abboud and
G. Christou, J. Am. Chem. Soc., 2007, 129, 12918
12919.
[48] C. M. Ramsey, E. del Barco, S. Hill, S. J. Shah,
C. C. Beedle and D. Hendrickson, Nature Physics,
2008, 4, 277 281.
[49] F. K. Larsen, E. J. L. McInnes, H. El
Mkami, J. Overgaard, S. Piligkos, G.
Rajaraman, E. Rentschler, A. A. Smith, G.
M. Smith, V. Boote, N. Jennings, G. A.
Timco and R. E. P. Winpenny, Angew. Chem. Int.
Ed. Eng., 2003, 115, 105 109.
[50] M. Affronte, F. Troiani, A. Ghirri, S.
Carretta, P. Santini, V. Corradini, R.
Schuecker, C. Muryn, G. Timco and R. E.
Winpenny, Angew. Chem. Int. Ed. Eng., 2003, 115,
105 109.
[51] Nikolay Raychev. Theoretically optimal
computing frontiers for rapid multiplication
through decomposition. International Journal of
Scientific and Engineering Research 09/2015;
6(8):1318, 2015..
[52] Nikolay Raychev. Quantum computing
models for algebraic applications. International
Journal of Scientific and Engineering Research
09/2015; 6(8):1281, 2015..
[53] R. Raussendorf, Phys. Rev. A, 2005, 052301.
[54] C. S. Lent, B. Isaksen and M. Lieberman, J.
Am. Chem. Soc., 2003, 1056 1063.
[55] O. Waldmann, H. U. Gdel, T. L. Kelly and L. K.
Thompson, Inorg. Chem., 2006, 45, 3295.
[56] Nikolay Raychev. Indexed cluster of
controlled computational operators. International
Journal of Scientific and Engineering Research
09/2015; 6(8):1295, 2015.
[57] Nikolay Raychev. Quantum multidimensional
operators with many controls. International Journal
of Scientific and Engineering Research 09/2015;
6(8):1310. DOI:10.14299/ijser.2015.08.007, 2015.
[58] Special issue of Chem. Rev., , 1998, 98, pp. 1
390, edited by C. L. Hill.
[59] Nikolay Raychev. Algorithm for switching 4-
bit packages in full quantum network with

multiple network nodes. International Journal of
Scientific and Engineering Research 08/2015; 6(8):
1289‐1294. DOI: 10.14299/ijser.2015.08.004, 2015.
[60] A. Muller, P. Kogerlera and A. W. M. Dressb,
Coord. Chem. Rev., 2001, 222, 193 218.
[61] Nikolay Raychev. Reply to "Flexible flow shop
scheduling: optimum, heuristics and artificial
intelligence solutions". Expert Systems 2015;
25(12): 98-105, 2015.
[62] Nikolay Raychev. Bilaterally Symmetrical
Transformation between Independent Operators
and Rotations. Journal of Quantum Information
Science, 5, 79-88. doi: 10.4236/jqis.2015.53010, 2015.
[63] S. Caillieux, D. de Caro, L. Valade, M. Basso
Bert, C. Faulmann, I. Malfant, H. Casellas, L.
Ouahab, J. Fraxedas and A. Zwick, J. Mater.
Chem., 2006, 13, 2931 2936.
[64] Nikolay Raychev. Formalized Operators with
Phase Encoding. Journal of Quantum Information
Science, 5, 114-126. doi: 10.4236/jqis.2015.53014.
[65] Y. Wang, X. Wang, C. Hu and C. Shi, J.
Mater.Chem., 2002, 12
[66] Nikolay Raychev. Multi-functional formalized
quantum circuits. International Journal of Scientific
and Engineering Research 10/2015; 6(9):1304-1310.
DOI:10.14299/ijser.2015.09.004, 2015.
[67] Nikolay Raychev. Application of the
Raychev's formalized Circuits. International
Journal of Scientific and Engineering Research
10/2015; 6(9):1297-1304.
DOI:10.14299/ijser.2015.09.003, 2015.
[68] Nikolay Raychev. Analysis of the complexity
of the formalized circuits of Raychev. International
Journal of Scientific and Engineering Research
10/2015; 6(9): 1289-1296.
DOI:10.14299/ijser.2015.09.002, 2015.

IJSER

http://www.ijser.org/

