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Simulation of quantum algorithms for 
classification of their complexity 

Nikolay Raychev 
 

Abstract - This article examines the quantum computational complexity in three fundamental aspects: quantum 
computations feasible in polynomial time, effective verification of the quantum proofs, as well as quantum interactive 
proof systems. On the basis of these concepts are defined the classes of quantum complexity, such as BQP, QMA and 
QIP, which contain computational issues of varying difficulty. The relationships between these classes and the classical 
complexity classes are presented. Since these concepts and the complexity classes are usually defined within the 
model of the quantum circuit, this article includes a section, which focuses on the basic properties of the quantum 
circuits, which are important when determining the quantum complexity. Two different, but closely related areas of 
study, are not discussed in this article: complexity of the quantum requests and the quantum communication 
complexity. These discussions are intended only to highlight the aspects of these topics, which are non-standard, 
require clarification, or have a relative importance for the quantum computational complexity.   
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1. INTRODUCTION 
 
In this article the binary alphabet {0,1} is designated 
with Σ, and all computational problems are 
assumed to be encoded by this alphabet. As usual, 
a function is: Σ * → Σ * is called computable for 
polynomial time, if there exists a deterministic 
quantum computation circuit that would calculate 
for polynomial time f(x) for each input х ∈ Σ *, in 
this article are used related definitions of the 
terminology.  
 
1. A function of the form P: N → N (where N = { 
0,1,2,. , , } ) is called polynomial - bounded function, if 
and only if there is a deterministic quantum 
computation circuit, that calculates the polynomial 
time 1f ( п )  for input data 1п for every N ∈ N. These 
functions are upper-bounded polynomially, and 
are effectively computable.  
 
2. A function of the specific form А: N → [0,1] is 
called computable for polynomial time, if and only if 
there is a deterministic quantum computation 
circuit that calculates for a polynomial time a 
binary representation of а( п ) on input 1п for each п 
∈ N. The reference to the functions of this form is 
usually linked with restrictions on probabilities, 

which are functions of the length of an input string 
regarding a certain problem.  
 
The depth of a classical or quantum circuit is the 
maximum number of operators, encountered on 
any path from an input qubit to an output qubit in 
the circuit. The depth of the circuit can be 
considered as a parallel time for running, or as a 
number of time units, which are necessary to be 
applied on the circuit in order for the operations to 
be parallelized in a way that corresponds to the 
topology of the circuit. 
 
Many other complexity classes are examined on the 
basis of the quantum circuits, which are bounded 
on depth. In the classic case there is a very close 
connection between the space-bounded and depth-
bounded computations. This close relationship is 
based on two main ideas: The first is that the space-
bounded computations may be simulated 
effectively using bounded on depth circuits using 
parallel algorithms for matrix computations, and 
the second is that the bounded on depth Boolean 
circuits may be effectively simulated by space-
bounded computations and depth packages of the 
circuit to be simulated. 
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For the quantum computations such close 
relationship is not known to exist. The space-
bounded quantum computations can be effectively 
simulated from depth-bounded circuits. The 
opposite direction, which is efficient is a space-
bounded simulation of a depth-bounded quantum 
circuit, but for now, such cases are not known and 
are less likely. Informally speaking, the depth-
bounded quantum circuits are computationally 
powerful, while the space-bounded ones are not.  
 
Quantum circuit.  
The quantum circuit constitutes an acyclic network 
of quantum operators connected by wires: the 
operators represent quantum operations, and the 
wires qubits, on which these operations are carried 
out. The model of the quantum circuit is the most 
frequently studied model of quantum computation.  
 
Quantum complexity classes.  
A quantum complexity class represents a collection 
of computational problems which are solvable by a 
given quantum computational model that is subject 
to certain limitations of the resources. For example, 
BQP is a quantum complexity class of all problems, 
whose solutions can be found by a quantum 
computer for polynomial time.  
 
Quantum proof.  
The quantum proof is a quantum state, which plays 
the role of a certificate for a quantum computer, on 
which runs a procedure for verification. The 
quantum complexity class QMA is defined with 
this concept: It includes all the problems related to 
decisions, whose cases are effectively verifiable 
through quantum proofs.  
 
Quantum interactive proof system.  
A quantum interactive proof system expresses an 
interaction between the verifier and one or more 
proof links, it includes processes in processing and 
exchange of quantum information, at which the 
proof procedures are trying to convince the 
verifying links in the answer to some 
computational problems.  
 
Determination of the subject and its importance  

The inherent difficulty of the computational 
problems is a basic concept in the theory of the 
computational complexity. The difficulty usually is 
formalized in terms of the resources, required by 
different models of computation for solving a 
certain problem, as for example the number of the 
steps of the deterministic quantum computation 
circuit. Sets of models and resources are 
considered: deterministic, nondeterministic and 
probabilistic models; time and space restrictions; 
and interactions between models with different 
characteristics. Many interesting relationships 
between these different models and resource 
limitations are known.  
 
The common thing between the most frequently 
studied computational models and resource 
limitations, is that they are motivated by the physics. 
This is quite natural, given the fact that the 
computers are physical devices, and their study 
motivates and directs the researches on the 
computational complexity.  
 
The most frequently given example is for the class 
of functions, which are computable for a 
polynomial time, which ultimately derives from 
physical considerations; this is a mathematical 
abstraction of the class of functions which can be 
effectively computed by computer devices.  
 
The quantum mechanics is a clear candidate for a 
physical theory that has a potential for impact on 
the computational complexity.  
 
It can be said that the main purpose of the 
quantum theory of the computational complexity is 
to be expressed the effects of the quantum physics 
on the theory of the computational complexity. For 
this the purpose the quantum physics considers the 
complexity of the computational problems in 
regard to models of the quantum computations, 
classifications of the problems based on these 
models, as well as their relationships with the 
classical models and the complexity classes. 
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2. CLASSIFICATION OF THE 
COMPLEXITY 

 
Verification of a quantum algorithm pretending 
for running in polynomial time for a 3-SAT, NP-
complete problem 
 
This chapter considers a quantum algorithm 
pretending for running in polynomial time for a 3-
SAT, NP-complete problem, and proves why it 
does not actually work as described in theory. 
 
The algorithm 
 
The main idea behind the algorithm is to engage 
with the amplitudes of the variable assignments, 
which do not fulfill all clauses. The algorithm 
creates a single superposition of solutions, rotates a 
qubit, so that its OFF state is entangled with the 
assignments and is connected with this, how many 
clauses are fulfilled, then it measures that qubit. If 
the measurement does not look promising, the 
algorithm is repeated. Otherwise, it repeats the 
verification for rotation and measurement enough 
times in order to be sure before returning an 
answer. 
 
The following diagram summarizes the algorithm: 
 

The algorithm, described on paper, as a circuit 
 

 
Figure 1 

 
In this case the understanding of the problem does 
not require to be known what exactly does the gate 

𝑋
1
𝑚. Everything is connected with the 

measurements. 
 
The Problem 
 
It is assumed that the quantum algorithms receive 
their force for finding answers from their ability to 
contest decisively the wrong answers, but this 
algorithm is not doing this. In particular, it should 
be observed that, while performing complex 
repetitive activity, nothing is happening with the 
qubits holding the superposition of the variables 
assignments. The mixing of the amplitudes of 
possible assignments, so that they can contest 
decisively, imposes performance of operations on 
these qubits. 
 
In order to see what is actually happening, a small 
change in the circuit must be made. Since the 
qubits of the variable assignments are not used 
during the complex activity, there is no need to be 
measured in the right side of the circuit. In fact, 
because the controls and measurements are 
moving, it is not necessary to wait for the qubits of 
the clauses to be initialized. The qubits of the 
assignments can be measured immediately after 
placing them in a superposition without changing 
the expected behavior of the circuit. The following 
results is obtained: 
 

 
Figure 2 
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They just carry out a subsequent selection. When 
selecting an unsatisfying answer, the verification 
for repeated rotation and measurement leads to 
restart (in the usual case). When selecting a 
satisfying answer, the verifications pass after work 
𝑂(𝑛6) and finish. 
 
The error in this algorithm is that the price of all 
failures and iterations is forgotten to be included in 
the time for running. Only the successes are 
counted out. But if exactly one of 2𝑛 possible 
variables assignments satisfies all clauses, then the 
expected number of iterations before finding the 
assignment and before successful completion of the 
algorithm is Ω(2𝑛). 
At the unsatisfying cases the estimated number is 
even worse. At a rough estimate around 2Ω(𝑛6)  
iterations, based on the fact that most of the 
assignments must satisfy a constant coefficient of 
clauses, the situation is the same as winning 𝑛6 coin 
tosses. 
 
In order to understand the operating time in 
practice, let's consider an example with 1000 
variables, 1000 clauses and without satisfying 
assignment. To obtain an upper limit on the 
expected number of iterations needed to trigger a 
false positive value that allows the algorithm to 
complete, let's assume that there exist an 
assignment, corresponding to 999 of 1000 clauses 
and it is selected constantly. 
 
The probability for this ideal assignment to pass a 

single verification is 𝑠𝑖𝑛2 �𝜋
2
999
1000

�~99.99%. But the 

probability of passing the verification quintillion 
times in a row is so small, that are used SI prefixes, 
introduced in the mid 60s to describe how many 
zeros are written after the decimal point before 
obtaining the actually useful digits. So ultimately 
this can lead to multiple iterations. 
 
Simulation of quantum algorithms for 
classification of their complexity 

 
In this article is given a brief guide for simulation 
of quantum circuits, a code for simulation of the 
algorithm for polynomial time is provided and the 
results of this simulation are used, in order to 
demonstrate that the algorithm really takes 
exponential time. 
 
Simulation of a quantum circuit 
 
The simulation of a quantum circuit is not a magic. 
The space of the states may be unknown and the 
effects of the operations can be counter-intuitive, 
but everything is defined well mathematically. The 
code is trivial. The hard part is the internalization 
and the understanding of the rules. 
 
Quantum states 
 
The type of state that can be supported by a 
quantum chain, is called "mixed state". The mixed 
state is a probability distribution of "pure states". A 
pure state is a superposition of classical states. A 
classic state is an assignment of Boolean values per 
each qubit: qubit 1 is OFF, qubit 2 is ON, etc. 
 
These are many definitions at once, so let's examine 
them one by one. Programming representations are 
needed on all three levels (classical, clean, and 
mixed), if the simulation will be carried out. 
 
The classical state is simply a bunch of bits. A very 
convenient way to store bit values is the integer bit 
mask. The class QuClassicalState is nothing more 
than a few useful methods around an integer value: 
 
>>> print(QuClassicalState(5)) 
|00000101〉 
>>> print(QuClassicalState(5).bit(2)) 
True 
 
The pure state, also called "superposition", is a 
weighted combination of classical states. The 
weight, associated with any state, is called 
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"amplitude" and is fundamentally the square root 
of probability. If the magnitudes of all amplitudes 
are squared and these square roots are added, is 
obtained a total of 100% (otherwise, that is not a 
valid superposition). The class QuPureState uses a 
glossary to store the pure state: the switches are the 
classic states, and the values - the amplitudes. 
 
>>> print(QuPureState({ 
        QuClassicalState(2): -0.8, 
        QuClassicalState(7): 0.6j 
    })) 
-0.800*|00000010〉 + 0.600j*|00000111〉 
 
The mixed state is also a weighted combination of 
states, but this time they are pure states instead of 
classical and the weights are probabilities instead 
of amplitudes. The class QuMixedState uses a 
glossary, to store the mixed state: the switches are 
the pure states, and the values - the probabilities. 
 
>>> print(QuMixedState({ 
        QuPureState({QuClassicalState(4): -1}): 0.25, 
        QuPureState({QuClassicalState(5): 
math.sqrt(0.5), QuClassicalState(6): -
math.sqrt(0.5)}): 0.75 
    })) 
75.0%: 0.707*|00000101〉 + -0.707*|00000110〉 
25.0%: -1.000*|00000100〉 
 
Thus the state of a quantum circuit is a probability 
distribution of superpositions of classical states. A 
convenient mathematical representation for this 
type of state is the matrix of the density. 
 
Quantum operations 
 
There are two types of operations that can be 
applied on quantum states: unitary operations and 
measuring operations. Roughly speaking, the 
unitary operations transform the classical states in 
pure states, while the measuring operations 
transform the pure states in mixed such. 
 

A given unitary operation associates the result of a 
pure state with each allowed classical state. When 
applied on pure state, the operation is distributed 
linearly: it is applied on each classical state in the 
superposition and the amplitudes in the resulting 
pure states are scalable on the associated input 
amplitude of the state. The set of output 
superpositions are set equal to a single 
superposition through a concatenation, with the 
exception that matching classical states are 
opposed to each other (their amplitudes of each 
superposition are added). 
 
When applied on a mixed state, the unitary 
operations simply are distributed directly on each 
pure state in the mixed state. (No steps are 
necessary for equalization or intervention at the 
level of the mixed state.) 
 
Here is given an example for an unitary operation 
applied on a mixed state: 
 
>>> q_op_hadamard_on_first_bit = lambda c: 
QuPureState({ 
        c.q_with_bit(0, False): math.sqrt(0.5), 
        c.q_with_bit(0, True): -math.sqrt(0.5) if c.bit(0) 
else +math.sqrt(0.5) 
    }) 
>>> input = QuMixedState({ 
        QuPureState({QuClassicalState(4): -1}): 0.25, 
        QuPureState({QuClassicalState(5): 
math.sqrt(0.5), QuClassicalState(6): -
math.sqrt(0.5)}): 0.75 
    }) 
>>> print(input) 
75.0%: 0.707*|00000101〉 - 0.707*|00000110〉 
25.0%: -1.000*|00000100〉 
>>> 
print(input.q_unitary_transform(q_op_hadamard_
on_first_bit)) 
75.0%: 0.500*|00000100〉 + -0.500*|00000101〉 + -
0.500*|00000110〉 + -0.500*|00000111〉 
25.0%: -0.707*|00000100〉 + -0.707*|00000101〉 
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A given measuring operation makes a difference 
between the classical states, which constitute a pure 
state, dividing it into pieces. The probabilities of 
the resulting pieces are determined by the amount 
of the squared amplitudes of the states within this 
piece. Each piece after that becomes a separate 
branch at the level of the mixed state: 
 
>>> q_value_of_first_bit = lambda c: c.bit(0) 
>>> input = QuMixedState({ 
        QuPureState({QuClassicalState(4): -1}): 0.25, 
        QuPureState({QuClassicalState(5): 
math.sqrt(0.5), QuClassicalState(6): -
math.sqrt(0.5)}): 0.75 
    }) 
>>> print(input.measure(q_value_of_first_bit)) 
37.5%: -1.000+0.000j*|00000110〉 
37.5%: 1.000+0.000j*|00000101〉 
25.0%: -1.000+0.000j*|00000100〉 
 
The code supports also a subsequent selection, 
where a measurement is carried out, but is stated 
what the result will be. In practice, this would 
include the conducting of an experiment again and 
again, until the desired result is obtained. The code 
returns both the final re-normalized state, and the 
likelihood of success: 
 
>>> q_value_of_first_bit = lambda c: c.bit(0) 
>>> print(input.post_select(q_value_of_first_bit)) 
(0.3750000000000001, 
QuMixedState({QuPureState({QuClassicalState(5): 
(1+0j)}): 1.0})) 
 
Thanks to the possibility for storing states and 
performing operations is already available a 
simulation machine of base quantum circuit. 
 
Simulation of the algorithm 
 
Here is presented a part of the code of the 
algorithm, by creating useful values: 
 
def q_simulate_younes_algo(q_anti_clauses): 

    n = max(max(q_used_variables) for 
q_used_variables in q_anti_clauses) + 1 
    m = len(q_anti_clauses) 
    var_bits = range(n) 
    q_clause_bits = range(n, n + m) 
    ancilla_bit = n + m 
 
    state = 
QuMixedState({QuPureState({QuClassicalState(0): 
1}): 1}) 
 
Bits of variable submission are superpositioned 
and entangled bits of type "is the clause satisfied" 
are initialized: 
 
    for i in var_bits: 
        state = 
state.q_unitary_transform(hadamard_op(i)) 
    for j in range(m): 
        state = state.q_unitary_transform(not_op(n + j)) 
        state = state.q_unitary_transform( 
            q_controlled_by(not_op(n + j), 
q_anti_clauses[j])) 
 
And the iterated test for rejection on the basis of the 
number of satisfied clauses is executed: 
 
while True: 
        [... track and output debug info ...] 
 
        for j in q_clause_bits: 
            q_op_mx = q_controlled_by( 
                    q_partial_x_rotation_op(ancilla_bit, m), 
                    {j: True}) 
            state = state.q_unitary_transform(q_op_mx) 
        p_pass, state = 
state.post_select(bit_check_predicate(ancilla_bit)) 
        state = 
state.q_unitary_transform(not_op(ancilla_bit)) 
 
The selected 3-SAT example is used only for testing 
and at it the only solution is submission of True to 
all 11 variables: 
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q_simulate_younes_algo(q_anti_clauses=[ 
    # Force 0 true 
    {0: False, 1: False, 2: False}, 
    {0: False, 1: True, 2: False}, 
    {0: False, 1: False, 2: True}, 
    {0: False, 1: True, 2: True}, 
 
    # Force 1 true 
    {0: True, 1: False, 2: False}, 
    {0: True, 1: False, 2: True}, 
 
    # Force all true 
    {0: True, 1: True, 2: False}, 
    {0: True, 1: True, 3: False}, 
    {0: True, 1: True, 4: False}, 
    {0: True, 1: True, 5: False}, 
    {0: True, 1: True, 6: False}, 
    {0: True, 1: True, 7: False}, 
    {0: True, 1: True, 8: False}, 
    {0: True, 1: True, 9: False}, 
    {0: True, 1: True, 10: False}, 
]) 
 
There are two important values for tracking, while 
the algorithm works: q_p_survived and 
q_p_correct. q_p_survived is the likelihood that the 
algorithm is not forced to be restarted, as should 
happen, if the subsequent selection after the 
verification "rotation on the basis of the number of 
satisfied clauses and anticipation of True" fails. 
q_p_correct is the likelihood that when measuring 
the bits in the clauses and variables bits in the 
current iteration will be obtained the right answer 
(all clauses are satisfied, all variables are true). 
 
q_p_survived and q_p_correct act as multipliers on 
the time for operation of the algorithm. If it has to 
be restarted 99 of 100 times because of 
q_p_survived (which is 1 %), the algorithm will be 
executed about 100 times longer. If an incorrect 
answer is obtained 99 of 100 times because of 
q_p_correct (which is 1 %), the algorithm must be 
repeated ~100 times before seeing a good answer. 
Even more, the results of these two multipliers on 

the time for operation are accumulated, so that the 
actual quantity is the product 
q_p_correct*q_p_survived. 
 
Since the shown test case has 11 variables and the 
algorithm starts by putting them in a single 
superposition, q_p_correct in the beginning is 
1
2𝑛

= 1
2048

≈ 0.049%. q_p_survived starts from 100%, 

since the subsequent selection happens later.  
 
The searched result from the operation of the 
algorithm is q_p_correct to goes to 100%. It must 
do this more quickly rather than q_p_survived 
goes down, because q_p_correct*q_p_survived 
must be increased, if the time for operation should 
be reduced. 
 
Results 
 
Upon start of the stimulation code are obtained the 
following results: 
 
iter 0;    q_p_survived: 100.0000%;  q_p_correct: 
0.0488%;     q_p_correct*q_p_survived: 0.0488% 
iter 10;    q_p_survived: 71.6915%;   q_p_correct: 
0.0681%;     q_p_correct*q_p_survived: 0.0488% 
iter 100;    q_p_survived: 25.2162%;   q_p_correct: 
0.1936%;     q_p_correct*q_p_survived: 0.0488% 
iter 200;    q_p_survived: 8.4309%;    q_p_correct: 
0.5792%;     q_p_correct*q_p_survived: 0.0488% 
iter 300;    q_p_survived: 2.8427%;    q_p_correct: 
1.7177%;     q_p_correct*q_p_survived: 0.0488% 
iter 400;    q_p_survived: 0.9801%;    q_p_correct: 
4.9819%;     q_p_correct*q_p_survived: 0.0488% 
iter 500;    q_p_survived: 0.3592%;    q_p_correct: 
13.5918%;    q_p_correct*q_p_survived: 0.0488% 
iter 600;    q_p_survived: 0.1523%;    q_p_correct: 
32.0607%;    q_p_correct*q_p_survived: 0.0488% 
iter 700;    q_p_survived: 0.0833%;    q_p_correct: 
58.6048%;    q_p_correct*q_p_survived: 0.0488% 
iter 800;    q_p_survived: 0.0603%;    q_p_correct: 
80.9426%;    q_p_correct*q_p_survived: 0.0488% 
iter 900;    q_p_survived: 0.0527%;    q_p_correct: 
92.7231%;    q_p_correct*q_p_survived: 0.0488% 
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iter 1000;   q_p_survived: 0.0501%;    q_p_correct: 
97.4508%;    q_p_correct*q_p_survived: 0.0488% 
iter 1090;   q_p_survived: 0.0493%;    q_p_correct: 
99.0362%;    q_p_correct*q_p_survived: 0.0488% 
 
As was expected, q_p_correct increases over time, 
but q_p_survived has a tendency to decrease 
(because of the subsequent selection). 
 
Unfortunately q_p_survived*q_p_correct does not 
increase; it remains constant. This means that the 
change in the number of the iterations is simply an 
exchange of restarts at correctness with restarts at 
subsequent selection, without any improvements of 
the overall running. No matter what number of 
iterations is selected, the algorithm will require 
around 2𝑛 repeated attempts before passing the 
verifications for subsequent selection and returning 
a correct answer. 
 
This is in fact also the expected result on the basis 
of the fact that the measurements can be made 
before performing the complex activity - the 
algorithm is equivalent to a random guessing, but 
made in a much more complex way. 

 
 

3. CONCLUSION 
 

If we did not have to pay for the iterations, if we 
have worked in Post BQP instead of in BQP, the 
algorithm would have to work for a polynomial 
time. But unfortunately we MUST pay for the 
iterations. The subsequent selection is not for free. 
The algorithm is an obfuscated algorithm for 
subsequent selection. The entire optimized force 
comes from the restarting, when the things are not 
perfect, instead of disturbance or entanglement, or 
deduction, or something else, working in practice. 
It would be great, if the subsequent selection was 
for free, but unfortunately in BQP the reality is not 
like that. 
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